

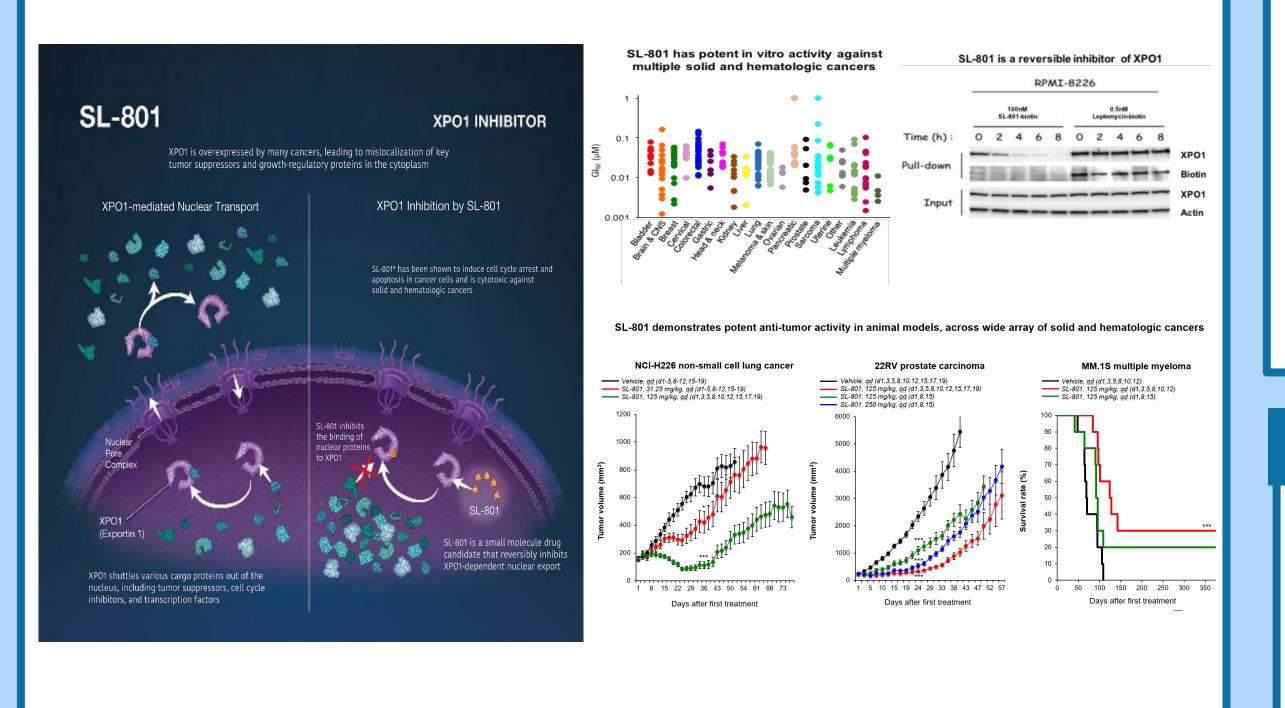
^{6.} Stemline Therapeutics, Inc., New York, NY; ^{7.} Sarah Cannon Research Institute/Tennessee Oncology, PLLC., Nashville, TN.

Judy Wang¹, John Nemunaitis², E. Gabriella Chiorean³, Patricia LoRusso⁴, Kevin Courtney⁵, Arturo Olguin⁶, John Bullington⁶, Shay Shemesh⁶, Janice Chen⁶, Christopher Brooks⁶, and Todd M. Bauer⁷ ^{1.} Florida Cancer Specialists/Sarah Cannon Research Institute, Sarasota, FL; ^{2.} Mary Crowley Cancer Research, Dallas, TX; ^{3.} University of Washington, Seattle, WA; ^{4.} Yale Cancer Center, New Haven, CT; ^{5.} UT Southwestern Medical Center, Dallas, TX; ^{3.}

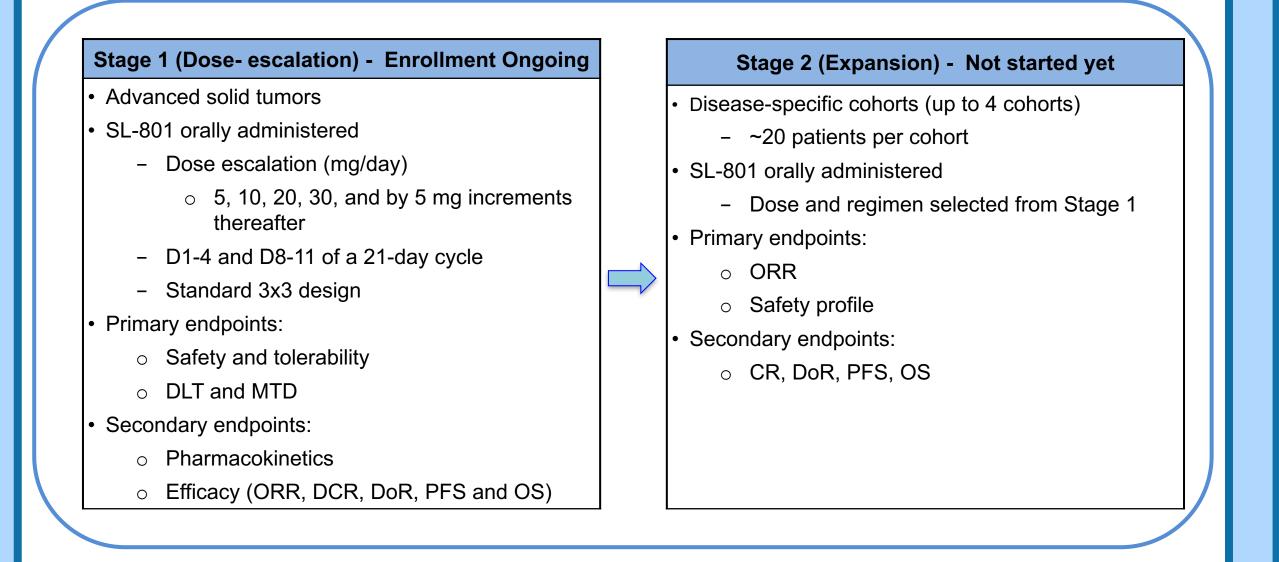
Background and Highlights

SL-801 Background

ESMO2017


#406P

- SL-801 is an orally administered, novel small molecule XPO1 (Exportin 1) inhibitor
- XPO1 is a key nuclear transport oncogene overexpressed in a variety of cancers
- Inhibition of XPO1 has been clinically validated in multiple cancer types
- SL-801 demonstrated potent in vitro and in vivo activity against a wide array of solid and hematologic cancer models
- SL-801 reversibly inhibits XPO1 offering the potential for a favorable therapeutic window
- A Phase 1 trial of SL-801 monotherapy in patients with advanced solid tumors is underway (NCT#02667873)
 - Results from ongoing dose escalation are reported here


XPO-1 Background

- XPO1 is the key mediator of nuclear-cytoplasmic transport and is involved with the export of more than 200 nuclear proteins, including:
- tumor suppressor proteins (p53, APC, Rb, BRCA1, FOXO family proteins)
- cell cycle inhibitors (p21/CIP1, p27/KIP1)
- transcription factors (ATF2)
- oncogenic proteins (CIP2A, Erk)
- immune response regulators (lkBa)
- molecular chaperone proteins (hsp90)^{1,2}
- XPO1 also exports specific subsets of messenger ribonucleic acid (mRNA) via export adaptor proteins³
- Mislocalization of a nuclear protein into the cytoplasm can render it ineffective as a tumor suppressor⁴ XPO1 is overexpressed in various solid tumors, including breast, cervical, ovarian, and pancreatic cancers, glioma, and osteosarcoma, as well as hematologic malignancies, including acute myeloid
- leukemia, chronic lymphocytic leukemia, multiple myeloma, and lymphoma^{1,5} XPO1 overexpression has been associated with poor prognosis, including being correlated with tumor
- grade, size, metastases, resistance to chemotherapy, as well as shortened progression-free survival (PFS) and overall survival (OS)¹

SL-801 Mechanism of Action and Preclinical Rationale

Study Design

Abbreviations: DLT = dose-limiting toxicity; ORR = overall response rate; DCR = disease control rate; DoR = duration of response; PFS = progression-free survival; OS = overall survival; MTD = maximum tolerated dose; CR = complete response

Ongoing Phase 1 Trial of SL-801, a Novel XPO-1 Inhibitor, in Patients with Advanced Solid Tumors; Interim Results

Patient Demographics

Age, years					
Median [range]	64 [39-76]				
Gender [n, (%)]					
Male	13 (54)				
Lines of therapy prior to the	study [n, (%)]				
1 st Line	1 (4)				
2 nd Line	5 (22)				
≥ 3 rd Line	18 (74)				
KRAS mutation [n, (%)]					
Yes	4 (16.6)				
No	7 (29)				
Unknown	13 (54)				
ECOG performance status [n, (%)]					
0	6 (25)				
1	17 (71)				
2	1 (4)				
Follow-up time on study, months					
Median [range]	1.4 [0.2 – 4.9]				

Cancer Diagnosis	n
Colorectal cancer (CRC)	5
Breast cancer	3
Non-small cell lung cancer (NSCLC)	2
GI adenocarcinoma (GI Adeno)	2
Pancreatic cancer	2
Neuroendocrine (Neuro-endo)	2
Biliary	1
Renal	1
Bladder	1
Ovarian carcinoma	1
Basal cell carcinoma (BCC)	1
Small bowel	1
Mesothelioma (Mesoth)	1
Anal squamous cell carcinoma (Anal SCC)	1

Inclusion / Exclusion

Select inclusion criteria

- Advanced (metastatic or locally advanced and unresectable) relapsed or refractory solid tumors
- ECOG 0-2
- Adequate organ function, including:
- Creatinine ≤1.5x ULN, albumin ≥ 2.5 g/dL, bilirubin ≤1.5x ULN, AST/ALT ≤2.5x ULN (≤5x for hepatic metastases), prothrombin time $\leq 1.5x$ ULN (and partial thromboplastin time $\leq 1.5x$ ULN) • Adequate hematologic function, including:
- ANC $\geq 1.5 \times 10^9$ /L, Hgb ≥ 8 g/dL (w/o RBC transfusions within prior 14 days), platelet count $\geq 100 \times 10^9$ /L (w/o platelet transfusions within prior 14 days)

Select exclusion criteria

- Persistent clinically significant (≥G2) toxicities from prior anticancer therapies (excluding G2 chemotherapyrelated neuropathy, and G2-3 lab abnormalities if not associated with symptoms and not considered clinically significant by PI)
- Chemotherapy, external-beam radiation or other systemic anticancer therapy within prior 28 days to first dose • Prior treatment with SL-801 or another drug that inhibits XPO1/CRM1 pathway
- Active secondary malignancy that may confound assessment of study endpoints
- Clinically significant cardiovascular disease, uncontrolled clinically significant pulmonary disease, suspected brain or leptomeningeal metastases
- Immunosuppressive therapy for a prior organ transplant
- Uncontrolled intercurrent illness
- Infection with HIV or chronic Hep B or Hep C

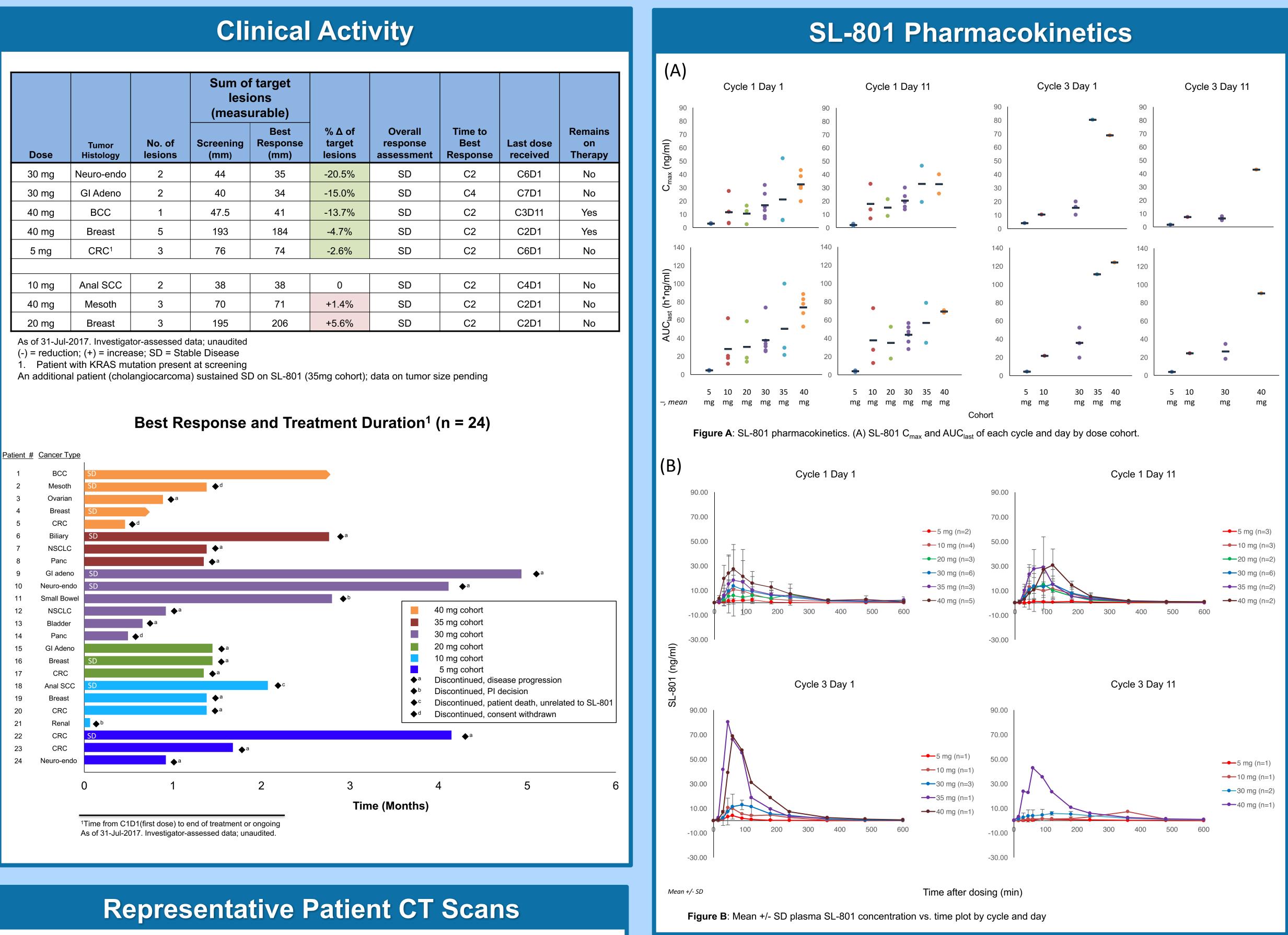
Safety and Tolerability

Treatment Related Adverse events (AEs) (N= 24 patients)

Most Common Treatment Related Adverse Events (≥ 15%)							
Preferred Term	All Grad	les n (%)	TRAEs n (%)				
	TRAEs	All AEs	G1 & 2	G3	G4	G5	
Nausea	10 (41.7)	14 (58.3)	9 (37.5)	1 (4.2)			
Fatigue	7 (29.2)	10 (41.7)	7 (29.2)				
Diarrhea	5 (20.9)	8 (33.3)	4 (16.7)	1 (4.2)			
Vomiting	4 (16.7)	10 (41.7)	4 (16.7)				
Decreased appetite	4 (16.7)	7 (29.2)	4 (16.7)				

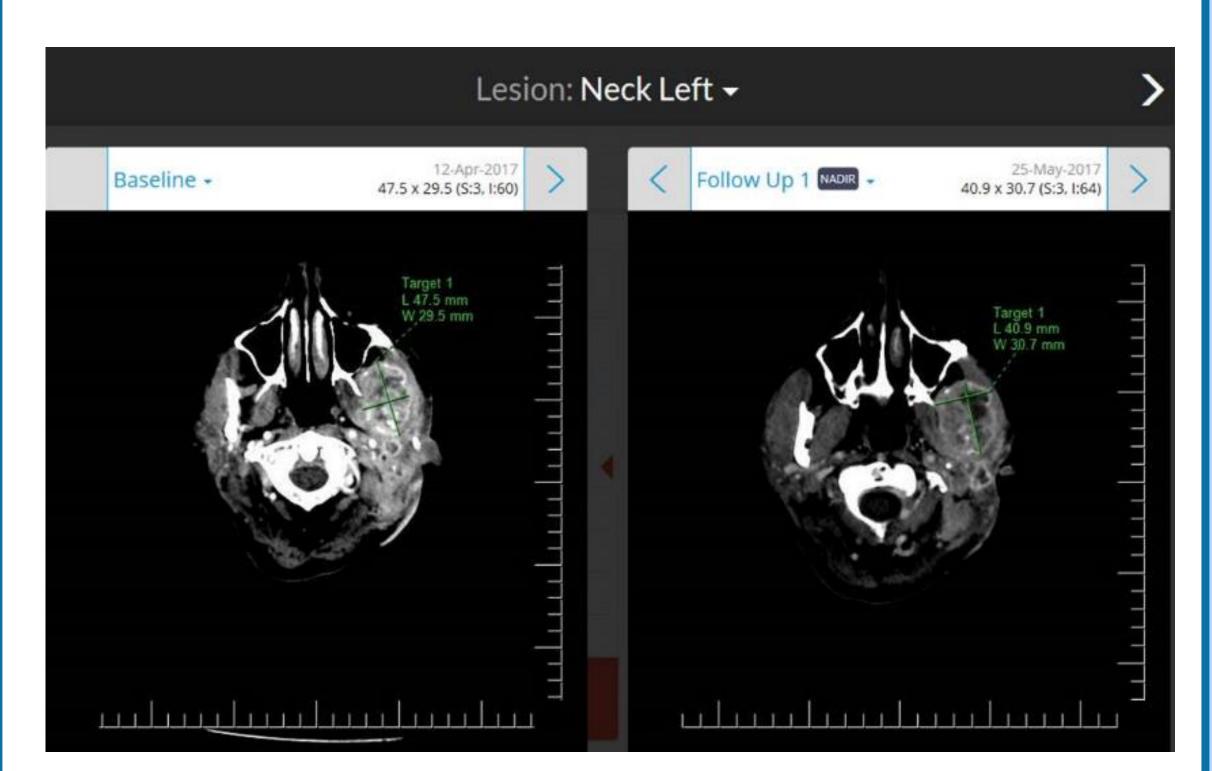
As of 31-Jul-2017. Investigator-assessed data; unaudited There was also one grade 3 TRAE of acute kidney injury reported at 30 mg/day dose level

Cohort	Dose (mg/day)	n
1	5	3
2	10	4
3	20	3
4	30	6
5	35	3
6	40	5
7	45	enrolling


As of 31-Jul-2017. Investigator-assessed data; unaudited.

No DLT's reported

- No MTD Dose escalation ongoing
- Currently enrolling 7th cohort (45 mg/day)


Clinical	Activity
Unital	Activity

			Sum of target lesions (measurable)						
Dose	Tumor Histology	No. of lesions	Screening (mm)	Best Response (mm)	% ∆ of target lesions	Overall response assessment	Time to Best Response	Last dose received	Remains on Therapy
30 mg	Neuro-endo	2	44	35	-20.5%	SD	C2	C6D1	No
30 mg	GI Adeno	2	40	34	-15.0%	SD	C4	C7D1	No
40 mg	BCC	1	47.5	41	-13.7%	SD	C2	C3D11	Yes
40 mg	Breast	5	193	184	-4.7%	SD	C2	C2D1	Yes
5 mg	CRC ¹	3	76	74	-2.6%	SD	C2	C6D1	No
10 mg	Anal SCC	2	38	38	0	SD	C2	C4D1	No
40 mg	Mesoth	3	70	71	+1.4%	SD	C2	C2D1	No
20 mg	Breast	3	195	206	+5.6%	SD	C2	C2D1	No

Representative target lesion response

- 74 year old female with a metastatic stage IV basal cell carcinoma (BCC) located in the head and neck. Prior therapies included vismodegib and an experimental anti-CD40 therapy
- Achieved stable disease (SD) while receiving SL-801; CT scans (day 21 of cycle 2 vs baseline) indicated a reduction in target lesions of 13.7% (47.5 \rightarrow 41 mm)
- Patient remains on SL-801 with durable SD (7 cycles, ongoing)

Conclusions

<u>Safety</u>

- Manageable safety and tolerability profile during dose escalation, with no modification of dosing schedule required thus far
- No DLT or MTD has been reached up to 40 mg/day
- Most common TRAEs were grade 1-2, with no grade 4 or 5 toxicity reported
- Dose escalation continues

Efficacy

- Ideal therapeutic dose not yet determined as dose escalation continues
- Stable disease achieved in 37.5% (9/24) of patients • 20% disease shrinkage noted in one patient with heavily pre-treated neuroendocrine tumor

Pharmacokinetics

Dose-dependent increases in exposure observed

Study Status and Next Steps

- Dose escalation continues, seventh cohort (45 mg/day) currently enrolling Manageable safety and tolerability profile demonstrated thus far
- Achievement of multiple cases of stable disease, including with tumor reductions in some patients with
- relapsed/refractory tumors
- Further safety, pharmacokinetic (PK), pharmacodynamic (PD), and efficacy updates expected next year Additional trials planned (including single agent, combination, hematologic cancers)

References

- Turner et al. Biochemical pharmacology 2012; 83(3): 1021-32 Tan et al. American journal of physiology – Renal physiology 2014; 307(11): F1179-86
- 3. Siddiqui et al. WIREs RNA 2012; 3:13-25
- 4. Hung et al. Journal of cell science 2011; 124(Pt 20): 3381-92
- 5. Senapedis et al. Seminars in cancer biology 2014; 27:74-86