Tagraxofusp in Patients with Chronic Myelomonocytic Leukemia (CMML): Updated Results of an Ongoing Phase 1/2 Trial

Mrinal M. Patnaik, MBBS¹, Haris Ali, MD², Eunice S. Wang, MD³, Abdulraheem Yacoub, MD⁴, Vikas Gupta, MD, FRCP, FRCPath⁵, Sangmin Lee, MD⁶, Gary Schiller, MD⁷, James M. Foran, MD⁸, Ayalew Tefferi, MD¹, Christopher Brooks, PhD⁹, Guillermo Garcia-Manero, MD¹⁰, Terra L. Lasho, PhD¹, Tariq I. Mughal, MD, FRCP, FRCPath^{9,11}, and Naveen Pemmaraju, MD¹⁰

¹Mayo Clinic, Rochester, MN, USA; ²City of Hope, Duarte, CA, USA; ³Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA; ⁴Kansas University Cancer Center, Westwood, KS, USA; ⁶Princess Margaret Cancer Centre, Toronto, ON, Canada; ⁶Weill Cornell Medical Center, New York, NY, USA; ⁷David Geffen School of Medicine at UCLA, Los Angeles, CA, USA; ⁸Mayo Clinic Cancer Center, Jacksonville, FL, USA; ⁹Stemline Therapeutics, Inc, New York, NY, USA; ¹⁰The University of Texas MD Anderson Cancer Center, Houston, TX, USA; ¹¹Tufts University Medical School, Boston, MA, USA

63rd Annual Meeting of the American Society of Hematology, December 11–14, 2021

Mrinal M. Patnaik: Board of directors/advisory committee: Stemline; research funding: Kura Oncology

- CMML is an aggressive clonal hematopoietic stem cell disorder of older adults, with a median survival of <36 months</p>
- Poor clinical outcomes in CMML result from bone marrow failure, high risk of transforming to AML, and competing comorbidities in older adults
- Clinical management of patients with CMML is challenging, with the only approved therapies being HMAs, which have no significant effect on the natural history of the disease
- Allogeneic stem cell transplantation can potentially offer cure, but only about 10% of patients are eligible

CD123 in CMML

1. Orazi A, Germing U. Leukemia. 2008;22:1308-1319. 2. Pophali P, et al. Am J Hematol. 2018;93:1347-1357. 3. Krishnan A, et al. Blood. 2018;132 (supp 1): abstract 1809. 4. Ji P, et al. Blood. 2014;123:3220.

CD123 Expression on Blasts and Monocytes

Targeting CD123

Tagraxofusp structure and mechanism of action

Study (NCT02268253) Objectives and Design

Multicenter, multistage, phase 1/2 trial of TAG monotherapy in adult patients with CMML

Stage 1: Lead-in (completed)	Stage 2: Expansion (completed) Stage 3A: 2-arm, non-randomized, open-label multicenter (enrolling)								
TAG at 7-, 9-, or 12- (Stage 1) and 12-mcg/kg (Stages 2 and 3A) dose infused IV on days 1–3 of 21-day cycles (C 1–4, all stages), 28-day cycles (C 5–7, Stages 1, 2; C ≥5, Stage 3A), 42-day cycles (C ≥8, Stages 1, 2), until clinically significant PD or intolerable toxicity									
Key objectives: safety and efficacy; in Stage 3A, genomic landscape and single-cell mass cytometry are also assessed									
	Response Criteria								
MDS IWG 2006; MDS/MPN 201	MDS IWG 2006; MDS/MPN 2015 (with 2021 stable disease amendment)								
	Key Eligibility Criteria								
 Age ≥18; ECOG PS 0–2 High-risk first L; R/R Adequate baseline organ function Not eligible for allogeneic stem of 	ell transplant								

Demographics and Baseline Characteristics

Characteristic	N=38
Median age, years (range)	70 (42–87)
Male, n (%)	28 (73.7)
CMML type, n (%) CMML-1 CMML-2	20 (52.6) 17 (44.7)
Median ECOG PS (range)	1 (0–2)
Prior lines of therapy No/Yes, n (%) Median (range)	17 (44.7)/21 (55.3) 1 (0–7)

Characteristic	
Snaracteristic	
Cytogenetic risk category, n (%) High Intermediate Low Other	12 (31.6) 11 (28.9) 11 (28.9) 2 (5.3)
CPSS-Mol risk, n (%) High Intermediate-1 Intermediate-2 Low	9 (23.7) 3 (7.9) 3 (7.9) 6 (15.8)

This table based on available data

Best Response and Treatment Duration (N=38)

#Other reasons: disease relapse, physician decision, withdrawal by patient, and other.

Overall Survival (N=38)

Data cutoff date: October 1, 2021
Overall median OS: 15.6 months (95% CI, 8.1–17.5; range, 0.36–40.77)

Clinical Parameters of Patients with BMCR – Stages 1 and 2 (n=4 of 29)

Pt	Demographics Disease characterist		aracteristics		TAG		BM PB (% of blasts) (% of blasts)		Hem improvement/ erythroid response	Spleen size (cm)		e		
#	Age (yr)	Sex	CMML type	Risk stratification	Line/ Prior therapy	WBC (10 ⁹ /L)	Cycles at best response	Total cycles				Baseline	Best response	Reduction
1	68	М	1	Low	R/R Hydroxyurea	17.2	4	15	9→3	1→0	Y	14	nonpalpable	100%
3	69	М	1	Intermediate	R/R Azacitidine	44.7	4	13	6→1	1→0	Y	5	nonpalpable	100%
5	71	М	2	Other	1L None	9.3	4	8	10→1	0→0	Y	4	nonpalpable	100%
34	62	М	2	High	R/R Idarubicin/ Cytarabine	9.1	1	1	15→2 Bridged to alloSCT	0→0	NA	10	2	80%

Clinical Overview: Stage 3A

Eleven patients have been treated; presenting data on 8

Pt	Age (yr)		Best response				
#		CMML type	Phenotype	Prior lines of therapy	Cytogenetic risk stratification	Molecular mutations	
9	79	2	Proliferative	1	High	ASXL1, U2AF1	PR
10	62	1	Dysplastic	1	Low	Not analyzed	SD
12	81	2	Proliferative	2	Low	NRAS, SRSF2, TET2 (2 mutations)	BMPR
14	51	2	Proliferative	1	Intermediate	ASXL1, KRAS, TET2 (2 mutations)	SD
16	59	2	Proliferative	1	High	ASXL1, NF1	SD
17	72	2	Proliferative	2	Low	ASXL1, NRAS, SETBP1, SRSF2	Clinical benefit – spleen response
20	62	2	Proliferative	1	Intermediate	SRSF2, ASXL1, RUNX1, ETV6, SETDB1, STAT5B	PR
32	82	2	Proliferative	1	High	CBL, KRAS, NRAS, TET2	PD

BM and PB Responses Stage 3A (n=8 of 11)

Pt	Age (yr)	WBC	Monocytes	Percentage of blasts
#		Baseline (10º/L)		ВМ
9	79	3.5	14→0.5 (10º/L)	5→NL
10	62	10.1	1.8→1.1 (10º/L)	2→1
12	81	67.3	15.9→3.2 (%)	5→NL
14	51	27.5	9.6→9.2 (10º/L)	19→16
16	59	18.6	5.5→5.4 (10º/L)	16→6
17	72	98.2	44.3→Missing data (%)	NL→NL
20	62	3.3	0.2→Missing data (10º/L)	0→NL
32	82	22.8	5.1→Missing data (10º/L)	10→Missing data

Responses in patients #9 and 12 were associated with a substantial decrease in monocyte count

NL=normal

Clonal Dynamics on Therapy

D4 #	Cono	Nucleotide	Amino ooid	VAF			
Γ (#	Gene	Nucleolide		C1D1	C1D21	C4D21	
9	U2AF1	c.101C>T	S34F	24%	21%	44%	
	ASXL1	c.1934dup	G646Wfs*12	21%	16%	38%	
12	NRAS	c.34G>A	G12S	36%	36%	37%	
	SRSF2	c.284C>T	P95L	46%	46%	44%	
	TET2	c.3921delG	K1308Sfs*55	69%	67%	64%	
	TET2	c.5741T>A	L1914*	42%	41%	42%	
14	ASXL1	c.3261C>A	Y1087*	41%	44%	43%	
	KRAS	c.34G>A	G12S	33%	36%	37%	
	TET2	c.1648C>T	R550*	44%	44%	45%	
	TET2	c.1960delC	Q654Kfs*46	64%	67%	74%	
16	ASXL1	c.1773C>A	Y591*	39%	NT	41%	
	NF1	c.1989dup	N664Efs*6	65%	NT	77%	
20	ASXL1 ETV6 RUNX1 SETDB1 SRSF2 STAT5B	c.1934dup c.536dupT c.1244_1247dup c.3685A>C c.284C>G c.2135T>A	G646Wfs*12 L179Ffs*17 F416Lfs*185 N1229H P95R V712G	24% 30% 24% 31% 32%	NT NT NT NT NT	28% 31% 26% 8% 35% 36%	

Changes in monocyte M01 fraction over time

NT=sample not available

Safety and Tolerability (N=38)

Most common AEs (≥15% of patients)			TRAEs, n (%	TEAEs, n (%)			
Preferred term	All grades	Grade 1	Grade 2	Grade 3	Grade 4	All grades	 TRAEs were reported in 28 (74%) patients
Nausea	10 (26)	8 (21)	1 (3)	1 (3)	0	14 (37)	▶ Most common G≥3 were anemia,
Anemia	9 (24)	0	4 (11)	5 (13)	0	15 (40)	nausea
Hypoalbuminemia	9 (24)	5 (13)	4 (11)	0	0	14 (37)	Thrombocytopenia did not occur beyond C1
Thrombocytopenia	9 (24)	0	1 (3)	3 (8)	5 (13)	9 (24)	 Of the 8 pts with CLS, all were in
CLS	8 (21)	0	4 (11)	4 (11)	0	8 (21)	C1, with no recurrences
Vomiting	7 (18)	6 (16)	1 (3)	0	0	11 (29)	Median time to all-grade CLS was 5.5 days (range, 2–26)
ALT increase	6 (16)	5 (13)	1 (3)	0	0	11 (29)	One patient had a TRAE leading to study discontinuation: 13 (34%)
Peripheral edema	6 (16)	5 (13)	1 (3)	0	0	13 (34)	patients had a TRAE leading to
Weight increase	6 (16)	5 (13)	1 (3)	0	0	11 (29)	 dose interruption No treatment-related deaths

occurred

Conclusions

- TAG monotherapy in 38 patients with high-risk CMML (treatment naive and R/R) has shown reasonable clinical activity
- Evolving results suggest clinical benefits in a cohort of poor-risk patients, with 10% BM CRs and associated hematologic improvement and marked reduction in splenomegaly
- TAG monotherapy was well-tolerated in CMML, with a manageable and predictable safety profile
- Stage 3A of the trial is ongoing and, apart from efficacy/safety analysis, includes a translational biomarker discovery component
- Based on the Proof of Concept demonstrated, combination studies are planned

The authors and Stemline Therapeutics would like to thank all the patients and their families, as well as

Investigators, co-investigators, and the sponsor: Stemline and study teams

The study (NCT02268253) was funded by Stemline Therapeutics.

Editorial and medical writing assistance was provided by Iratxe Abarrategui, PhD, CMPP, from Aptitude Health, The Hague, the Netherlands, and funded by Stemline Therapeutics Inc., New York, NY, USA. The authors are fully responsible for all content and editorial decisions for this presentation.