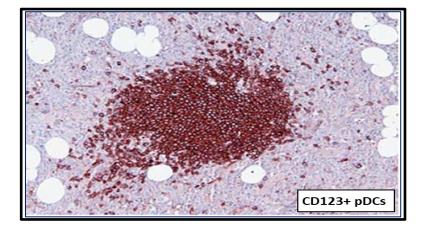
A Phase 1/2 Study of Single-Agent Tagraxofusp, a First-in-Class CD123-Targeted Therapy, in Patients with Relapsed/Refractory Myelofibrosis

Abdulraheem Yacoub, MD¹, Mrinal M. Patnaik, MBBS², Haris Ali, MD³, Eunice S. Wang, MD⁴, Vikas Gupta, MD, FRCP, FRCPath⁵, Sangmin Lee, MD⁶, Gary J. Schiller, MD⁷, Minakshi S. Taparia, MD⁸, Animesh Pardanani, MBBS, PhD², Ayalew Tefferi, MD², Srdan Verstovsek, MD, PhD⁹, Joseph D. Khoury, MD⁹, Christopher Brooks, PhD¹⁰, Tariq I. Mughal, MD, FRCP, FRCPath^{10, 11}, Naveen Pemmaraju, MD, PhD⁹

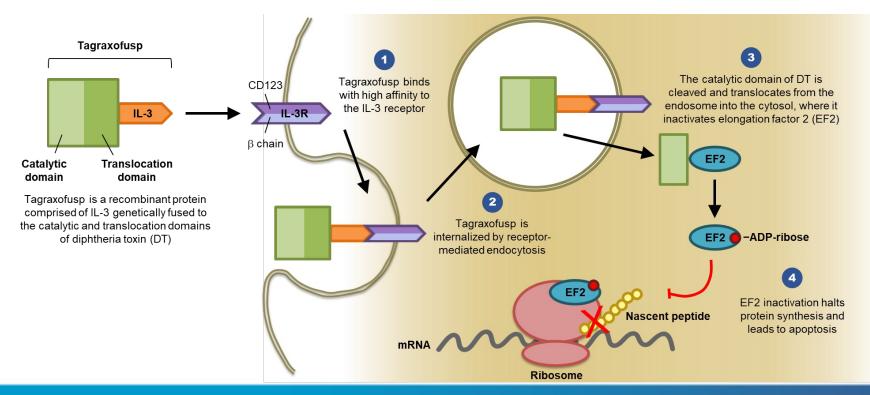
¹University of Kansas Cancer Center, Westwood, KS, USA; ²Mayo Clinic Cancer Center, Rochester, MN, USA; ³City of Hope Comprehensive Cancer Center, Duarte, CA, USA; ⁴Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA; ⁵Princess Margaret Cancer Center, Toronto, ON, Canada; ⁶Weill Cornell Medical Center, New York, NY, USA; ⁷David Geffen School of Medicine at UCLA, Los Angeles, CA, USA; ⁸University of Alberta Hospital, Edmonton, AB, Canada; ⁹The University of Texas MD Anderson Cancer Center, Houston, TX, USA; ¹⁰Stemline Therapeutics Inc, New York, NY, USA; ¹¹Tufts University School of Medicine, Boston, MA, USA

Disclosures


Abdulraheem Yacoub: Speakers' bureau: Incyte; Membership on an entity's Board of Directors/advisory committees: Novartis, CTI BioPharma, Acceleron Pharma, Agios

Background

- Myelofibrosis (MF) is an aggressive form of myeloproliferative neoplasm (MPN) with an annual rate of transformation to acute myeloid leukemia (AML) of about 20%
- The type I JAK 1/2 inhibitors (JAKi), ruxolitinib and fedratinib, are the only currently FDA approved therapies. Neither significantly impacts the natural history or biology of the disease and novel therapies are required


Novel targets: Pre-clinical rationale

- CD123 (IL-3Rα) is normally expressed on maturing myeloid cells and plasmacytoid dendritic cells (pDCs)
- Therapeutic targeting of CD123 using tagraxofusp (TAG) either alone or in combination with ruxolitinib has activity in primary patient samples, including those in the accelerated-phase and with high molecular risk profiles¹. These data support clinical studies testing TAG in patients with MF.

Targeting CD123

Tagraxofusp* structure and mechanism of action

O'Brien J, et al. *Drugs Future*. 2018;43:873-880. *TAG is FDA and EMA approved for the treatment of blastic plasmacytoid dendritic cell neoplasm (BPDCN)

Study Design

Stage 1: Single-arm Lead in, n=4

- Tagraxofusp dosing schedule:
 - 7, 9, or 12 mcg/kg via IV infusion, days 1-3 of a 21-day cycle (C1-4); 28-day cycle (C5-7); and 42-day cycle thereafter
- Key objectives: Determine the optimal dose and regimen for Stage 2

Stage 2: Single-arm Expansion, n=35

- Tagraxofusp dosing schedule:
 - 12 mcg/kg via IV infusion, days 1-3 of a 21-day cycle (C1-4); 28-day cycle (C5 and beyond)
- Key objectives: Further define safety and efficacy

Select Inclusion Criteria

- Prior therapy/relapsed/refractory (R/R) MF
- Intermediate-1 or higher risk-classification
- Evidence of acceleration
- Age ≥18; ECOG PS 0-2

- Safety:
 - Treatment-emergent Adverse Events (TEAE)

Stage 2 MF Study Endpoints¹

- Efficacy:
 - Spleen Size Reduction (Exam, Imaging (CT/MRI)
 - Total Symptom Score (TSS) Reduction*

1. Tefferi A., et al. *Am J Hematol* 2013A; 88:142-150. *Responses were based on the revised IWG-MRT-ELN 2013 Response Criteria

Baseline Patient Demographics

Characteristic	N=39	Characteristic	N=
Median age, years [range]	70 [54, 87]	Prior Systemic Therapy, n (%)	
Female, n (%)	18 (46)	JAKi	36
ECOG PS, n (%) 0	4 (10)	Hypomethylating Agents Stem Cell Transplant	4 (4 (
1 2	24 (62) 11 (28)	Median # of prior treatments, median [range]	2 [
Splenomegaly, n (%)	29 (74)		
Hepatomegaly, n (%)	5 (13)	Myelofibrosis subtype, n (%) Primary MF	26
Platelets (10 ⁹ /L), median [range]	67 [5, 651]	Post-PV	8 (
>100, n (%)	16 (41)	Post-ET	5 (
>50-100, n (%) ≥20-50, n (%)	7 (18) 12 (31)		
<20, n (%)	4 (10)	DIPSS-plus risk score ¹ , n (%) High	11
Hemoglobin (g/dL), median [range]	8.3 [5.7-14.1]	Intermediate-2	18
WBC (x10 ⁹ /L), median [range]	12 [1-74]	Intermediate-1	10

Baseline Cytogenetic and Molecular Characteristics

Cytogenetics, n (%)	N=39
Abnormal Karyotype	19 (49)
20q-	4 (10)
-7/7q-	3 (8)
-5/5q-	2 (5)
12p-	2 (5)
l(17q)	1 (3)
13q-	1 (3)
Other	6 (15)

Molecular mutations, n (%)	N=39
Driver Mutations	
JAK2 V617F	24 (62)
CALR	3 (8)
MPL	2 (5)
Triple Negative	10 (26)
Prognostic Mutations*	
ASXL1	9 (23)
SF3B1/U2AF1	7 (18)

Safety Analysis

Treatment-emergent adverse events (TEAEs) occurring in ≥15% of patients

	Any Grade, n (%)	Grade ≥3, n (%)
Hypoalbuminemia	15 (39)	1 (3)
Pyrexia	12 (31)	3 (8)
Headache	11 (28)	0
Thrombocytopenia	10 (26)	6 (15)
Chills	9 (23)	0
Increased alanine aminotransferase	7 (18)	0

	Any Grade,	Grade 3,	Grade 4,	Grade 5,
	n (%)	n (%)	n (%)	n (%)
Capillary Leak Syndrome (CLS)	3 (8)	1 (3)	1 (3)	0

Of the patients who experienced CLS (n=3), the median duration to any-grade CLS was 5 days (range: 2-8 days); no cases of CLS after cycle 1

► No Grade 5 CLS was reported

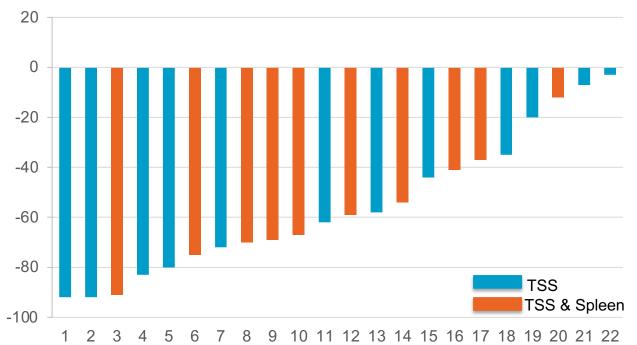
Spleen Responses* (N=24)

► 24/39 patients (62%) had baseline splenomegaly (≥5 cm palpable BCM)

		Baseline Thrombocytopenia		Baseline Monocytosis	
	n (%)	Platelets <100× 10 ⁹ /L	Platelets <50× 10 ⁹ /L	Monocytes ≥1 %	
Any reduction	13 (54%)	5 (21%)	5 (21%)	3 (13%)	
≥50% reduction	7 (29%)	2 (12%)	2 (12%)	0	

- ► 3/24 (13%) with concomitant monocytosis
- ▶ 10/24 (42%) with concomitant thrombocytopenia

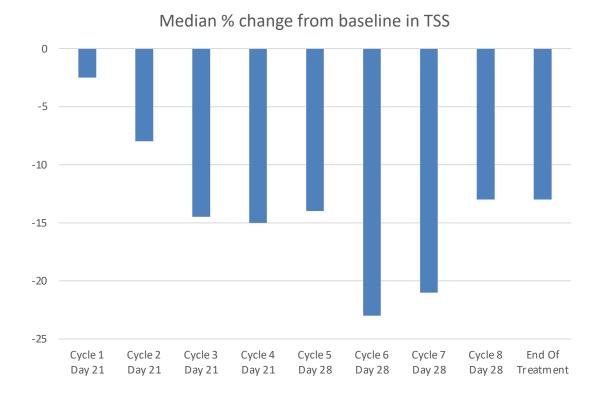
Spleen Volume Reduction (SVR)


Patient	Spleen \	Volume Reduction	(SVR)
#	Baseline	Best response	Reduction, %
1	3150	1528	52
2	1169	754	36
3	4006	3252	19
4	2471	2143	13
5	1154	999	13
6	2404	2128	11
7	2265	2039	10
8	3580	3291	8
9	1616	1511	6
10	2091	2043	2
11	1676	1676	0
12	2711	2711	0
13	3519	3519	0
14	3142	3142	0
15	417	417	0

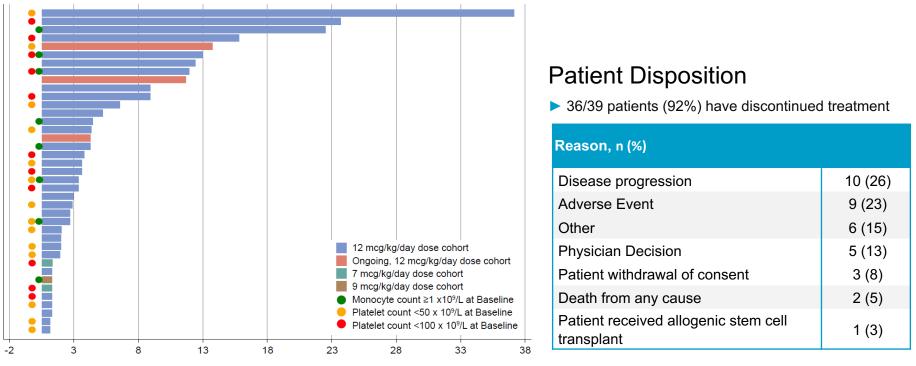
 Spleen responses were assessed objectively by imaging (CT, MRI) in 15 patients with baseline splenomegaly

7/15 patients (47%) achieved ≥10% reduction in size

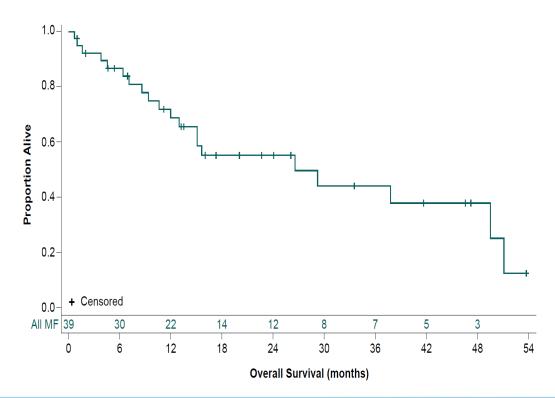
- 4/15 (27%) also had monocytosis
- 7/15 (47%) also had thrombocytopenia
 - 3/15 (20%) with platelets <100</p>
 - 4/15 (27%) with platelets <50</p>


TSS & Spleen Responses

Percentage change in TSS from baseline


- Total Symptom Score (TSS)¹ was reduced in 22/39 patients (56%)
- 14/39 patients had a
 ≥50% improvement in clinical symptom score
- 10/39 (26%) had reductions from baseline in both TSS and spleen size

TSS Responses Over Time


Treatment Duration

Median duration of follow-up was 26.1 months (95% CI 16.0, 46.6)

Months on Study

Overall Survival

- 19/39 patients (49%) remain alive at data cutoff date of September 30, 2021
- Median overall survival:
 - 26.6 months (95%: CI 12.9, 51.1)

Range, months [0.66, 53.72]

Conclusions

The results of this phase 1/2 study of tagraxofusp monotherapy in previously treated MF patients with high-risk clinical features demonstrated clinical efficacy and a predictable and manageable safety profile

Modest splenic responses were observed. Clinical benefit in terms of total symptom scores were also noted

This includes in patients who were refractory to JAKi therapy and those with associated monocytosis and thrombocytopenia

Overall survival was 26.6 months in this cohort suggesting disease modifying properties of tagraxofusp

Based on the clinical findings of this study, as well as promising pre-clinical evidence of antitumor activity on primary patient samples, a combination of TAG with a JAKi in high-risk patients with MF will now be assessed The authors and Stemline Therapeutics would like to thank all the patients and their families, as well as:

Investigators, co-investigators, and the sponsor: Stemline and study teams

The study (NCT02268253) was funded by Stemline Therapeutics.

Editorial and medical writing assistance was provided by Rebecca L. Crepeau, PhD, from Aptitude Health, Atlanta, Georgia, USA, and funded by Stemline Therapeutics Inc., New York, NY, USA. The authors are fully responsible for all content and editorial decisions for this presentation.