Results from Phase 1/2 Trial of Tagraxofusp in Combination with Pomalidomide and Dexamethasone in Relapsed or Refractory Multiple Myeloma

Paul Richardson, MD, Myo Htut, MD, Cristina Gasparotto, MD, Jeffrey Zonder, MD, Thomas Martin, MD, Emma Scott, MD, Janice Chen, PhD, Chris Brooks, PhD, Matt Hobeman, Nicole Rupprecht, Halyna Wysoksy, Dharminder Chaun, PhD, Arghya Ray, PhD, Kenneth Anderson, MD, Claudia Paiva-Fraba, MD

DNA-Farber Cancer Institute, Boston, MA; City of Hope National Medical Center, Duarte, CA; Duke University School of Medicine, Durham, NC; Karmanos Cancer Institute, Detroit, MI; University of California San Francisco, San Francisco, CA; Oregon Health & Science University, Portland, OR; Stemline Therapeutics, Inc., New York, NY

Introduction and Highlights

Tagraxofusp: Novel-targeted therapy directed to CD123
- CD123 approved for the treatment of adult and pediatric patients, 2 years and older, with select myeloid malignancies (cHL/DR) and chronic myelomonocytic leukemia
- Brownstone Transplantation Designation (BTD)
- Marketing Authorization Application (MAA) for BTD is under review by the European Medicines Agency

CD123 target: Expressed by multiple malignancies, including certain myeloproliferative neoplasms such as multiple myeloma (MM), chronic myelomonocytic leukemia, and myelofibrosis, certain B-cell lymphomas, and leukemia

Tagraxofusp and MM
- This bone marrow microenvironment of many multiple myeloma (MM) patients contains high levels of CD123-expressing plasma-activated dendritic cells (pDCs), which have been shown to augment MM growth and contribute to drug resistance
- Tagraxofusp was well-tolerated, with a predictable and manageable safety profile, when dosed in combination with pomalidomide (POM) and dexamethasone (DEX) in patients with relapsed or refractory (R/R) MM
- Evidence of CD123 suppression in peripheral blood and bone marrow was observed in this patient population

Background: Multiple Myeloma
- Multiple myeloma (MM) is a heterogeneous bone marrow malignancy characterized by the accumulation of abnormal plasma cells in the bone marrow (BM)
- The disease is associated with a variety of clinical manifestations including lytic bone lesions, hypercalcemia, renal impairment, and anemia
- MM is the second most common hematologic malignancy, with an estimated 12,000 new cases and approximately 13,000 deaths per year in the US (SEER 2019)
- Current treatment options for MM, including combinations with proteasome inhibitors (bortezomib, carfilzomib, ixazomib, and delphamide), immunomodulatory drugs (thalidomide, lenalidomide), and anti-CD38 antibodies (belizumab, isatuximab), have not changed the natural history of MM
- However, despite these treatment options, most patients relapse as the MM clone cannot be permanently eradicated, thus showing the necessity for new treatment modalities

Study Design and Inclusion Exclusion Criteria

Dosing Schedule

Response Evaluation and Treatment Duration

Baseline Demographics

<table>
<thead>
<tr>
<th>Age, years</th>
<th>Male/Female</th>
<th>Median [rang]</th>
<th>65 [57-70]</th>
</tr>
</thead>
<tbody>
<tr>
<td>65 [57-70]</td>
<td>Male</td>
<td>5 (96)</td>
<td></td>
</tr>
<tr>
<td>65 [57-70]</td>
<td>Female</td>
<td>7 (96)</td>
<td></td>
</tr>
</tbody>
</table>

Number of Prior Therapies

| Median [rang] | 3 (10) |

Prior Therapies

- Dexamethasone: 9 (100%)
- Bortezomib: 8 (100%)
- Lenalidomide: 7 (78%)
- Cyclophosphamide: 7 (78%)

Safety and Tolerability

Predictable and manageable safety profile both as a single agent and when combined with POM-DEX

MM all classes, n=9

<table>
<thead>
<tr>
<th>Side Effect</th>
<th>Grade 1</th>
<th>Grade 2</th>
<th>Grade 3</th>
<th>Grade 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anemia</td>
<td>9 (100%)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Neutropenia</td>
<td>9 (100%)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Thrombocytopenia</td>
<td>9 (100%)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Fatigue</td>
<td>9 (100%)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Hypothyroidism</td>
<td>9 (100%)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

References

Summary of Tagraxofusp Trial Results

- In this Phase 1/2 trial, tagraxofusp was well-tolerated, with a predictable and manageable safety profile, when dosed in combination with pomalidomide (POM) and dexamethasone (DEX) in patients with heavily pretreated R/R MM
- Most common grade 3/4 TEAEs were thrombocytopenia and neutropenia
- 5 patients who achieved tagraxofusp-POM-DEX combination had partial responses (PRs) and decreases in POC levels while on treatment with tagraxofusp
- These patients also experienced decreased levels of myeloma-related laboratory assessments values after 1 cycle of treatment with tagraxofusp combined with POM and DEX
- Evidence of DEX suppression in peripheral blood and BM was observed in this patient population
- All 5 patients experienced decreases in DEX levels
- Given CD123 suppression on pDCs in the tumor microenvironment and the potential synergistic effect of targeting both pDCs, including BTK inhibitors, and POM, tagraxofusp may offer a novel mechanism of action in MM
- Further research for better development include in other patient populations, combination with daratumumab, and/or novel agents such as BTK inhibitors