ASCO 2019 *#7059*

Results from Ongoing Phase 1/2 Clinical Trial of Tagraxofusp (SL-401) in Patients with Relapsed/Refractory Chronic Myelomonocytic Leukemia (CMML)

Mrinal M. Patnaik¹, Haris Ali², Abdulraheem Yacoub³, Vikas Gupta⁴, Sangmin Lee⁵, Eunice Wang⁶, Gary Schiller⁷, Megan Sardone⁸, Halyna Wysowskyj⁸, Shay Shemesh⁸, Janice Chen⁸, Chris Brooks⁸, Enrique Poradosu⁸, Peter McDonald⁸, Nicole Rupprecht⁸, Animesh Pardanani¹, Ayalew Tefferi¹, Minakshi Taparia⁹, Moshe Talpaz¹⁰, Srdan Verstovsek¹¹, Joseph Khoury¹¹, Naveen Pemmaraju¹¹

¹Mayo Clinic, Rochester, ²City of Hope, Duarte, ³Kansas University Cancer Center, Westwood, ⁴Princess Margaret Cancer Center, Westwood, ⁴Princess Margaret Cancer Center, Westwood, ⁵Weill Cornell Medical Center, New York, ⁶Roswell Park Comprehensive Cancer Center, Buffalo, ⁷Ronald Reagan UCLA Medical Center, Los Angeles, 8Stemline Therapeutics, New York, 9University of Alberta Hospital, Edmonton, AB, Canada, 10University of Michigan Health System, Ann Arbor, 11The University of Texas MD Anderson Cancer Center, Houston

Introduction and Highlights

Tagraxofusp

- Novel targeted therapy directed to CD123
- FDA-approved for the treatment of adult and pediatric patients, 2 years and older, with blastic plasmacytoid dendritic cell neoplasm (BPDCN)
- Breakthrough Therapy Designation (BTD) designation
- Marketing Authorization Application (MAA) for BPDCN granted accelerated assessment, and under review, by the EMA

CD123 target

Expressed by multiple malignancies, including certain myeloproliferative neoplasms (MPN) such as chronic myelomonocytic leukemia (CMML) and myelofibrosis (MF), certain acute myeloid leukemia (AML) patient subsets, BPDCN and others

Tagraxofusp and CMML

- Tagraxofusp has demonstrated clinical activity, with a predictable and manageable safety profile, in this Phase 1/2 trial (NCT02268253) of patients with relapsed/refractory
- Patient enrollment is ongoing
- Given the encouraging data from this trial and the unmet medical need in patients with CMML, a pivotal program is being constructed

Background: CMML

- Aggressive myeloid malignancy, characterized by monocytosis
- Median age: 72-76 years
- **Poor prognosis**
- Presents with myelodysplastic (MDS) or myeloproliferative (MPN) features
- Originally classified as an myelodysplastic syndrome (MDS)
- Has since been re-classified as an MDS/MPN
- MD-CMML (myelodysplastic CMML): WBC <13 x 10⁹/L
- MP-CMML (myeloproliferative CMML): WBC \geq 13 x 10 9 /L; characterized by advanced disease, splenomegaly, RAS pathway mutations, poor prognosis
- Historically: Hypomethylating agents (HMAs) were approved for myelodysplastic syndrome (MDS) at a time when CMML was considered an MDS
- First-line CMML, historically:
- In MDS pivotal trials, ORR 11%-27%
- Subsequent to approvals, additional clinical trials demonstrated ORR centered at ~30%-40% (range ~25%-75%) upon initial exposure to HMAs, but responses generally not sustained, with CR rates ~15%
- Median overall survival (OS): 24-36 months

Relapsed/refractory CMML, historically:

- Outcomes have been described as dismal, irrespective of management
- Median OS: 6-7 months
- Currently: ~50% of CMML now considered a myeloproliferative neoplasm (MPN)
- International consortium recommended revising response criteria (historically MDSfocused) to capture MPN elements (Savona, 2015)

An international consortium proposal of uniform response criteria for myelodysplastic/myeloproliferative neoplasms (MDS/MPN) in adults

To include new/worsening hepatomegaly, granulocytic sarcoma, skin lesions, etc.

Increasing symptoms as noted by increase in ≥50% as per the MPN-SAF TSSII

Reduction in Hgb by ≥1.5g/dL from best response or from baseline as noted on complete blood count

Transfusion dependence

Tagraxofusp, Mechanism of Action, and Rationale in CMML

CMML and BPDCN can share genetic alterations and

Blastic plasmacytoid dendritic cell neoplasm and chronic

Biallelic inactivation of the retinoblastoma

myelomonocytic leukemia to a blastic plasmacytoid dendritic cell neoplasm: shared clonal origins of two aggressive

mvelomonocytic leukemia: a shared clonal origin

have a common clonal origin

CMML can transform into BPDCN

Leukemia (2017) **31,** 1238–1240; doi:10.1038/leu.2017.38

- Novel targeted therapy directed to CD123
- FDA-approved for the treatment of adult and pediatric patients, 2 years and older, with blastic plasmacytoid dendritic cell neoplasm (BPDCN)
- Breakthrough Therapy Designation (BTD)
- Marketing Authorization Application (MAA) granted accelerated assessment, and under review, by the

CD123 expression in CMML

- CMML blasts
- Neoplastic pDCs¹ in CMML microenvironmer
- disease compartments

11 (48)

Riaz, Cancer Control, 2014; Patnaik, Blood Cancer J. 2018; Brunetti, Leukemia, 2017; Krishnan, ASH 2018.; Ji, Blood, 2014

Patnaik et al. *Blood Cancer Journal* (2018)8:82 DOI 10.1038/s41408-018-0120-5

¹Plasmacytoid dendritic cell (pDC) is the cell of

Prior Therapy for CMML, n (%)

Hypomethylating agent (HMA)

Baseline Demographics and Characteristics

Age, years	n=23
Median [range]	69 [42-80]
Gender	
Male	19 (83)
CMML Type	
CMML-1	15 (65)
CMML-2	8 (35)
ECOG	
Median [range]	1 [0-2]
Median Blast Count, %	
Median [range]	6.0 [0-18]
Baseline Sites of Disease, n	(%)
Bone marrow (BM) ¹	17 (74)
Spleen	12 (52)
Liver	4 (17)

9 (39) Prior Systemic Therapy (PST) 3 (13) Stem cell transplant (SCT)² 2 (9) No prior systemic therapy for CMML Cytogenetic Risk Category³ 8 (35) High risk 8 (35) Intermediate risk Low risk Other mutations 2 (9)

² Patient received prior therapy and SCT ³ One patient did not have these data at the time of cut-off ECOG=Eastern Cooperative Oncology Group

Trial Design

There were 3 cases of capillary leak syndrome, all grade 2

• MPN: CMML or MF without evidence of • Tagraxofusp (12 μg/kg)^a via IV infusion, **days 1-3** of a 21-day cycle (cycles 1-4), a 28-day cycle (cycles 5-7); a 42-day cycle thereafter Key objectives: To further define safety and efficacy

Stage 2 Expansion (Enrolling)

a12 μg/kg/day was highest tested dose (MTD not reached) and selected for Stage 2 CMML=chronic myelomonocytic leukemia: MF=myelofibrosis. SM=systemic mastocytosis: PED=primary eosinophilic disorders: IV=intravenous:

Safety and Tolerability

- Predictable and manageable safety profile No apparent cumulative AEs, including in the bone marrow, over multiple cycles
 - CMML (all doses); Stages 1 and 2 (n=23)

(≥ 15% of treatment related adverse effects, TRAEs)									
Preferred Term	All Grade	TRAEs n (%)							
Preferred Term	TRAEs	All AEs	G1 & 2	G3	G4	G5			
Hypoalbuminaemia	8 (35)	10 (43)	8 (35)						
Thrombocytopenia	7 (30)	7 (30)		3 (13)	4 (17)				
Nausea	6 (26)	7 (30)	5 (22)	1 (4)					
Vomiting	6 (26)	9 (39)	6 (26)						
Anaemia	5 (22)	8 (35)	1 (4)	4 (17)					
Fatigue	4 (17)	8 (35)	4 (17)						
Oedema peripheral	4 (17)	10 (43)	4 (17)						
Weight increased	4 (17)	7 (30)	4 (17)						

Clinical Activity Overview: CMML

					BONE MARROW		N	SPLEEN1			
Patient	Patient Dose (µg/kg/d)		Prior Therapy	CMML Type	WBC (10 ⁹ /L)	Baseline (BM blast %)	Best Response (BM blast %)	BMCR	Baseline (cm)	Best Response (cm)	Spleen Size Reduction
11	12	3	HMA	CMML-1	5.3	5	PD		10	0	100%
5	9	2	HMA	CMML-1	44.7	6	1	6% → 1%	5	0	100%
12	12	2	PST	CMML-2	9.3	10	1	10% → 1%	4	0	100%
3	12	2	HMA	CMML-1	99.2	7.6	SD		2	0	100%
9	12	2	HMA	CMML-2	66.1	18	N/A	N/E	2	0	100%
20	12	1		CMML-1	16.3	4	SD	N/E	2	0	100%
17	12	2	PST	CMML-2	8.1	15	2	15% → 2%	10	2	80%
1	7	2	PST; SCT	CMML-2	33.8	15	SD		20	10	50%
8	12	2	НМА	CMML-1	64.2	6	PD		22	14	36%
23	12	2	PST	CMML-1	31.8	2	Pending	N/E	6	4	33%
21	12	2	PST	CMML-1	25.6	2	N/A	N/E	27	20	26%
6	12	2	PST	CMML-1	27.2	8	N/A		14	11	21%
10	12	2	HMA	CMML-1	2.7	11	7		No splenomegaly N/E		N/E
7	12	2	HMA	CMML-1	15.0	9	7		No splenomegaly N/E		N/E
13	12	2	PST	CMML-1	26.1	6	4.9		No splenomegaly N/E		N/E
2	9	2	PST	CMML-2	21.9	5	PD		No splenomegaly N/E		N/E
14	12	2	PST	CMML-2	33.8	14	SD		No splenomegaly N/E		N/E
4	12	3	HMA; Clo	CMML-1	18.5	0	3	N/E	No splenomegaly N/E		N/E
15	12	1		CMML-1	12.3	6	SD		No splenomegaly N/E		N/E
16	12	2	HMA; SCT	CMML-1	3.3	3	N/A	N/E	No splenomegaly N/E		N/E
18	12	N/L	N/L	CMML-2	2.3	14	PD		No splenomegaly N/E		N/E
19	12	2	НМА	CMML-1	8.8	3	PD	N/E	No splenomegaly N/E		N/E
22	12	3	HMA; SCT	CMML-2	4.3	6	N/A	N/E	No Splenomegaly N/E		N/E

= Patient bridged to SCT in remission on tagraxofusp ¹Measured by physical exam (cm below costal margin [BCM])

HMA=hypomethylating agent; PST=prior systemic therapy; SCT = stem cell transplant; Clo=clofarabine; N/E=not evaluable; N/L=not listed; N/A=not available; SD=stable disease; PD=progressive disease

Duration of Treatment

Bone Marrow and Spleen Responses

- 3 bone marrow complete responses (BMCRs)
- 1 patient bridged to stem cell transplant in remission on tagraxofusp
- 100% (12/12) spleen responses
 - 67% (8/12) had reduction of ≥50%
 - 50% (4/8) with baseline ≥5 cm had reduction ≥50%

Pt#	Lina	Bone Marrow CR	Spleen Responses ¹				
	Line	Pre → Post	Pre → Post	% Response			
11	3		$10 \text{ cm} \rightarrow 0 \text{ cm}$	100%			
5	2	6% → 1%	$5 \text{ cm} \rightarrow 0 \text{ cm}$	100%			
12	2	10% → 1%	$4 \text{ cm} \rightarrow 0 \text{ cm}$	100%			
3	2		$2 \text{ cm} \rightarrow 0 \text{ cm}$	100%			
9	2	N/E	$2 \text{ cm} \rightarrow 0 \text{ cm}$	100%			
20	1	N/E	$2 \text{ cm} \rightarrow 0 \text{ cm}$	100%			
17	2	$15\% \rightarrow 2\%$ (bridged to stem cell transplant)	10 cm \rightarrow 2 cm	80%			
1	2		$20 \text{ cm} \rightarrow 10 \text{ cm}$	50%			
8	2		22 cm \rightarrow 14 cm	36%			
23	2	N/E	$6 \text{ cm} \rightarrow 4 \text{ cm}$	33%			
21	2	N/E	$27 \text{ cm} \rightarrow 20 \text{ cm}$	26%			
6	2		14 cm → 11 cm	21%			

¹Patients with palpable spleen at baseline

BCM=below costal margin (by physical exam); N/E=not evaluable

Summary of Tagraxofusp Trial Results

- In this Phase 1/2 trial, tagraxofusp was clinically active, with a predictable and manageable safety profile in patients with relapsed/refractory CMML – in particular, in patients with baseline splenomegaly (historically associated with advanced disease, morbidity, and poor prognosis)
- 3 bone marrow CRs
- 1 patient bridged to stem cell transplant (SCT)
- 100% (12/12) of evaluable patients had a reduction in baseline splenomegaly
- 67% (8/12) had reduction by ≥50%
- 50% (4/8) with baseline spleen size ≥5cm had reduction by ≥50%
- Most common TRAEs include hypoalbuminemia (35%), thrombocytopenia (30%), nausea (26%) and vomiting (26%). Most common TRAEs, grade 3+, include thrombocytopenia (30%) and nausea (4%)
- Next steps include a pivotal program in patients with CMML

Next Steps for Tagraxofusp in Patients with CMML

- Given the encouraging data from this trial and the unmet medical need in patients with CMML, a pivotal program is being constructed
- The protocol is currently being designed to incorporate these elements - Eligibility
- Patients with CMML who failed first-line cytoreductive therapy Endpoints and criteria
- ORR (CR + PR), supported by duration, transfusion independence, safety
- Additional endpoints and criteria to be assessed for potential clinical benefit include
 - BM response with partial hematopoietic recovery; correlation to transfusionindependence and decreased risk of infections
 - Spleen size
- CD123 expression level
- Trial design
 - Single-arm, non-randomized
 - Open new cohort (Stage 3) to current study 0314
 - Stage 3a: assess potential clinical benefit of additional efficacy endpoints and criteria
 - Stage 3b: ORR +/- additional elements assessed in Stage 3a
 - An additional arm of patients with first-line CMML unlikely to benefit from available therapies is also under consideration

References

Loghavi et al. Blood Adv. 2018;2:1807

 Pophali et al. Am. J. Hematol. 2018: 93:1347 Patnaik et al. Am. J. Hematol. 2016; 91:631 Christie et al. ASH 2015; Abstract #3797 Black et al. Leukemia 2003: 17:155-9 Diefenbach et al. Blood 2011: 118:3737

 Brooks et al. Blood 2013; 122:4104 Pemmaraju et al. N Engl J Med; 2019; 380(17):1628-1637 Chauhan et al. Leukemia 2017; 135 • Solary et al. Blood 2017; 130:126-136 Alfonso et al. Amer J Hematol 2017; 92:599-606

Savona et al. Blood 2015; 125:1857

Alfonso et al. Am. J. Hematol. 2017; 92:599

Padron et al. Cl. Adv. In Hematol. & Oncol. 2014: 12:172

Moyo et al. Cur. Hematol. Malig. Reports 2017; 12: 468 • Itzykson et al. Intl. J. Hematol. 2017; 150:711 Orazi et al. Leukemia 2008; 22:1308 VIDAZA® [prescribing info.]. Summit, NJ: Celgene; 2018 • DACOGEN® [prescribing info.]. Rockville, MD: Otsuka; 2018

Disclosures: Sardone: Stemline - employment, equity ownership; Wysowskyj: Stemline - employment, equity ownership; Shemesh: Stemline employment, equity ownership; Chen: Stemline - employment, equity ownership; Brooks: Stemline - employment, equity ownership; Poradosu: Stemline - employment, equity ownership; McDonald: Stemline - employment, equity ownership; Rupprecht: Stemline - employment, equity ownership; Khoury: Stemline - research funding; *Pemmaraju:* Stemline - research funding; *Schiller:* Stemline - research funding; *Patnaik*: Stemline - research funding